首页> 外文OA文献 >Microscopic theory of refractive index applied to metamaterials: Effective current response tensor corresponding to standard relation $n^2 = \varepsilon_{\mathrm{eff}} \mu_{\mathrm{eff}}$
【2h】

Microscopic theory of refractive index applied to metamaterials: Effective current response tensor corresponding to standard relation $n^2 = \varepsilon_{\mathrm{eff}} \mu_{\mathrm{eff}}$

机译:应用于超材料的微观折射率理论:   对应于标准关系$ n ^ 2 =的有效电流响应张量   \ varepsilon _ {\ mathrm {eff}} \ mu _ {\ mathrm {eff}} $

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, we first derive the wavevector- and frequency-dependent,microscopic current response tensor which corresponds to the "macroscopic"ansatz $\vec D = \varepsilon_0 \varepsilon_{\mathrm{eff}} \vec E$ and $\vec B =\mu_0 \mu_{\mathrm{eff}} \vec H$ with wavevector- and frequency-independent,"effective" material constants $\varepsilon_{\mathrm{eff}}$ and$\mu_{\mathrm{eff}}$. We then deduce the electromagnetic and optical propertiesof this effective material model by employing exact, microscopic responserelations. In particular, we argue that for recovering the standard relation$n^2 = \varepsilon_{\mathrm{eff}} \mu_{\mathrm{eff}}$ between the refractiveindex and the effective material constants, it is imperative to start from themicroscopic wave equation in terms of the transverse dielectric function,$\varepsilon_{\mathrm{T}}(\vec k, \omega) = 0$. At the same time, this resultrefutes again the relation $n^2 = \varepsilon_{\mathrm{r}} \mu_{\mathrm{r}}$ interms of the microscopic response functions, and thus confirms the recentlydeveloped microscopic theory of the refractive index [Optik 140, 62 (2017)]. Onthe phenomenological side, our result is especially relevant for metamaterialsresearch, which draws directly on the standard relation for the refractiveindex in terms of effective material constants. Since for a wide class ofmaterials, the current response tensor can be calculated from first principlesand compared to the model expression derived here, this work also paves the wayfor a systematic search for new metamaterials.
机译:在本文中,我们首先导出与波矢和频率相关的微观电流响应张量,其对应于“宏观” ansatz $ \ vec D = \ varepsilon_0 \ varepsilon _ {\ mathrm {eff}} \ vec E $和$ \ vec B = \ mu_0 \ mu _ {\ mathrm {eff}} \ vec H $具有与波矢和频率无关的“有效”材料常数$ \ varepsilon _ {\ mathrm {eff}} $和$ \ mu _ {\ mathrm { eff}} $。然后,我们通过采用精确的微观响应关系来推论该有效材料模型的电磁和光学特性。特别是,我们认为,为了恢复折射率和有效材料常数之间的标准关系$ n ^ 2 = \ varepsilon _ {\ mathrm {eff}} \ mu _ {\ mathrm {eff}} $,必须从以横向介电函数$ \ varepsilon _ {\ mathrm {T}}(\ vec k,\ omega)= 0 $表示的微观波动方程。同时,该结果再次反驳了微观响应函数项的关系$ n ^ 2 = \ varepsilon _ {\ mathrm {r}} \ mu _ {\ mathrm {r}} $,从而证实了最近发展的微观理论。折射率[Optik 140,62(2017)]。在现象学方面,我们的结果与超材料的研究特别相关,超材料的研究直接根据有效材料常数得出了折射率的标准关系。由于对于各种各样的材料,当前响应张量可以根据第一原理计算得出,并且可以与此处导出的模型表达式进行比较,因此,这项工作也为系统搜索新的超材料铺平了道路。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号